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Abstract-The problem of minimum weight design of elastic structures under multiple loading
conditions is considered. It is shown that the problem can be expressed as a search for feasible
deflection patterns coupled with repeated searches for structures of minimum weight for given
stiffness. The latter is a Linear Programming Problem and implies an upper limit, different from
that set by connectivity, on both the number and distribution density of elements present in the
minimum weight design.

The problem of optimising elastic structures in the minimum-weight sense is one which is
now receiving increasing attention, see e.g. [1]. Perhaps the largest area of effort is that of
elastic structures under alternative sets of applied loads, when limits are placed on the
stresses in the elements of the structure and the deflections of the nodes. Although some
work (e.g. [2]) has been directed towards choosing the geometry of the structure, i.e.
the number and positions of the nodes, the problem of choosing cross-sectional areas of
members in a structure of fixed geometry is the best that can be hoped for in many cases.

This problem can, in general, be formulated as follows (using vector notation):

Minimise WIA

Subject to:

SL::;; SiA) ::;; Su

VL ::;; ViA)::;; Vu

A~O

1(a)

l(b)

1(c)

l(d)

j = 1,2, ... , M

where wand A are vectors of weights/unit cross-sectional area and actual cross-sectional
area respectively, Sj ami Vj are respectively values of stress failure criteria and deflection
under the jth applied load set Pj • Let the structure be defined as a set of nodes of given
coordinates,joined by an arbitrary number of members N. For any value of A, the deflection
can be computed from:

Vj = K-1Pj (2)

where K, the stiffness matrix, is a linear function of A. Then, Sj can be computed from Vj

and the individual element stiffness matrices.
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We will now consider an alternative formulation which sheds more light on the nature
of the problem than formulation (I) in the particular case of elastic structures of fixed
geometry. Note first that the stresses, being linearly dependent on the strains, are also
linear functions of the Vj and so the Sj (which may simply be vectors of stresses, as in a
pin-jointed structure: or nonlinear functions of stress, e.g. Von Mises Criteria) can be
written as functions of Vj • Thus, if the weight function can also be expressed as a function
of Vj , formulation (I), a problem in A, could be replaced by a problem in Vj • Let such a
weight function be designated W(V" ... , VM ), (== W(V)). Then (I) becomes:

Minimise W(V)

Subject to:

SL ~ S(V) ~ Su

VL ~ Vj ~ Vu

j = I, 2, 3, ... , M

3(a)

3(b)

3(c)

3(d)

Where the search is confined to values of Vj for which

W(Vj) > 0

Now consider how W(V) must be defined if a solution to (3) is to be identical with a
solution to (I). Clearly, for this condition to hold, W(Vj) must be the minimum weight of a
structure of the given geometry which will exhibit the deflections Vj under the loads Pj , at
the same time, of course, satisfying the equilibrium and compatibility equations of the
structure. Hence, W(V) is defined

W(V) == {Min wtA}

Subject to:

Pj = K(A)Vj

A~O

j = 1,2, ... , M.

Now K, the stiffness matrix, can be written

N
- '\' tk-K = 1... iii iiii

i= 1

4(a)

4(b)

4(c)

(5)

where iii is a transformation matrix which is only a function of geometry; and ki is an
element stiffness matrix, linear in Ai' Since, in equation 4(b), the vectors Vj are given, the
equation is in fact a set of linear equations in A:

4'(b)

where

and

k;' = KJA;, the constant part of Ki.



Maximum number and density of distribution of members in elastic structures 31 I

Let D be the number of degrees of freedom of the (supported) structure. Consider the
equation 4'(b). Each vector Pj has D components, and so 13j has D rows. The vector A
has N elements, so 13 has N columns. It follows that 4'(b) represents M x D equations in N
unknowns. There are two cases to be considered.

(i) Mx D~N.

In this case, formulation (4) is clearly a Linear programming problem in A.

(ii) M x D> N.

Formulation (3)-(4) is then not strictly equivalent to formulation (1) because equations
4'(b) cannot be solved for arbitrary Vj' i.e. W(V1 , ••• , VM ) is not defined for some set of
values of Vj; additional constraints would have to be included in (3) to ensure compatibility
of 4'(b). However, if a solution to the problem exists, then the formulations are equivalent
at the solution.

From these considerations, the following theorem can be stated:

Theorem

The maximum number of elements in an elastic structure of minimum weight for a
prescribed geometry, subject to stress and deflection constraints under multiple alternative
sets of applied loads, is equal to the product of the number ofload cases and the number of
degrees of freedom of the supported structure.

The theorem follows from the well-known Linear Programming result (e.g. [3]) which
states that a linear program with M equality constraints and N variables, has, at the solution,
at most M non-zero variables. Thus it is true in case (i), and is automatically satisfied in
case (ii).

There is an interesting corollary to the theorem. Consider a minimum weight structure
having deflections say V/. Any substructure SI of such a system can be considered in
isolation, so long as no changes are made to SI which alter the deflections, i.e. the stiffness
of SI' Clearly, SI must be the structure of minimum weight for that stiffness, since, if it
were not, a substructure of lower weight could be substituted without altering Vj *; since the
stress and deflection constraints are functions of Vj alone, such a substructure would also
be feasible. This violates the hypothesis that the initial overall structure is of minimum
weight, and so the corollary can be stated:

Corollary I

The limit set by the main theorem applies separately to every substructure within the
total structure.

Thus, there is an upper limit on the density of distribution of members within a
minimum-weight elastic structure. (It should perhaps be mentioned that corollary I does not
imply that an optimum structure can be arrived at by optimising substructures in isolation,
but merely that a structure thus designed would be subject to the same limits as a true
optimum structure.)

To illustrate the implications of the theorem, consider the case of a pin-jointed frame,
subject to one load case. Here, the theorem implies that the number of elements in the
minimum-weight frame is equal to the number of equilibrium equations at the nodes. This
could mean that the frame is statically determinate; or that it is redundant in some areas,
and a mechanism (which happens to be stiff under the particular load set) in others. How­
ever, corollary I denies the possibility of the second case, and so we can state:
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Corollary 2

The minimum weight pin-jointed elastic frame of prescribed geometry, under one ioad
set and subject to stress constraints and/or deflection constraints, is statically determinate.

Corollary 2 is of course well known, at least in the case of either stress or deflection
constraints; the reasoning above shows that it is simply a special case of a more general
theorem which applies to a larger class of structure and loading requirements.

The limits derived in this note in fact refer to the optimisation of any elastic structure
for which both weight and stiffness are linear functions of the design variables. The stress
constraints can be any function of deflections, and so can the deflection constraints. The
actual form of such constraints only modifies the feasible region in the space of the deflec­
tions in sub-problem (3), while leaving unaltered the form of sub-problem (4) on which the
theorem depends.
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A6cTpaKT - llcCJIep;yeTcli 3ap;a'la paC'IeTa Ha MIIHIIMYM Beca ynpyrllx KOHCTpyKl\Hil:, rrpll
YCJIOBllliX MHoroKpaTHoll: Harpy3KII. OKa3bIBaeTClI, 'ITO 3ap;a'la BblpalKaeTCli B Ka'leCTBe
HCCJIep;OBaHHlI B03MOlKHbIX clJOPM rrporH6a, corrplilKeHHoro C rrOBTopHbIMIl rrOIiCKaMH KOH­
CTPYKl\Hil: Ha MHHHMYM Beca, P;JIli 3ap;aHHoil: lKeCTKOCTIi. TIoCJIep;HlIli 3ap;a'la lIBJIlieTCli 3ap;a'leil:
JIIiHeil:Horo rrporpaMMllpOBaHHlI H 3aKJIIO'IaeT B ce6e BepXHllil: rrpep;eJI, OTJIII'lHblil: OT :noro,
rroCTpoeHHoro rrocpep;cTBOM CB1I3HOCTII, OTHOCIITeJIbHO II '1l1CJIa H rrJIOTHOCTIl pacrrpep;eJIeHllli
JJIeMeHTOB, rrpHcyTcTBYIOIl(HX B paC'IeTe Ha MIIHHMYM Beca.


